

Kuan-Yu Chen (陳冠宇**)**

2020/12/28 @ TR-313, NTUST

Review

• Hash table is a data structure in which keys are mapped to array positions by a hash function

– Division method

 $h(x) = x \mod M$

- Multiplication method $h(x) = |m(xA \mod 1)|$
- Mid-square method $h(x) = r - digit(x^2)$
- Folding method

 $h(x) = r - digit\left(\text{sum}\left(\text{divide}(x)\right)\right)$

Collision

- When two or more keys map to the same memory location, a collision is said to occur
- A method used to solve the problem of collision, also called collision resolution technique, is applied
	- Open addressing
	- Chaining

Open Addressing

- By using the technique, the hash table contains two types of values: sentinel values (e.g., -1) and data values
	- The sentinel value indicates that the location contains no data value at present but can be used to hold a value
- If the location already has some data value stored in it, then other slots are examined systematically in the forward direction to find a free slot
	- If even a single free location is not found, then we have an OVERFLOW condition
- The process of examining memory locations in the hash table is called probing
	- linear probing, quadratic probing, double hashing, and rehashing

Linear Probing

- The simplest approach to resolve a collision is linear probing – An extension of the division method
- If a value is already stored at a location generated by $h(x)$, then the following hash function is used to resolve the collision

$$
h(x, i) = [h'(x) + i] \bmod M
$$

- *M* is the size of the hash table, $h'(x) = x \text{ mod } M$, and i is the probe number that varies from 0 to $M-1$
- When we have to store a value, we try the slots: $[h'(x)] \mod M$, $[h'(x) + 1] \mod M$, $[h'(x) + 2] \mod M$, $[h'(x) + 3] \mod M$, and so no, until a vacant location is found

Example.

- Consider a hash table of size 10, please use linear probing to insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the table
	- Initial

• $h(72,0) = [h'(72) + 0] \text{ mod } 10$ $= [(72 \text{ mod } 10) + 0] \text{ mod } 10 = 2$

Example..

• Consider a hash table of size 10, please use linear probing to insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the table

 $= [(36 \text{ mod } 10) + 0] \text{ mod } 10 = 6$ 2 3 9 4 5 6 8 Ω 1 7 72 -1 36 27 --1 -1 —1 —1 —1 7

Example…

• Consider a hash table of size 10, please use linear probing to insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the table

- Step 5
	- $x = 63$

Example….

• Consider a hash table of size 10, please use linear probing to insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the table

- Step 6
\n•
$$
x = 81
$$

\n• $h(81,0) = [h'(81) + 0] \mod 10$
\n= $[(81 \mod 10) + 0] \mod 10 = 1$
\n• $h(92,0) = [h'(92) + 0] \mod 10 = 2$
\n• $h(92,1) = [h'(92) + 1] \mod 10$
\n= $[(92 \mod 10) + 0] \mod 10 = 2$
\n• $h(92,2) = [h'(92) + 1] \mod 10$
\n= $[(92 \mod 10) + 1] \mod 10 = 3$
\n• $h(92,2) = [h'(92) + 2] \mod 10$
\n= $[(92 \mod 10) + 1] \mod 10 = 3$
\n• $h(92,3) = [h'(92) + 2] \mod 10$
\n= $[(92 \mod 10) + 2] \mod 10 = 4$
\n• $h(92,3) = [h'(92) + 3] \mod 10$
\n= $[(92 \mod 10) + 3] \mod 10 = 5$

Example…..

• Consider a hash table of size 10, please use linear probing to insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the table

 Ω

—1

81

72

63

24

92

10

9

—1

101

27

36

Quadratic Probing

• If a value is already stored at a location generated by $h(x)$, then the following hash function is used to resolve the collision

$$
h(x, i) = [h'(x) + c_1 \times i + c_2 \times i^2] \bmod M
$$

– *M* is the size of the hash table, $h'(x) = x \text{ mod } M$, *i* is the probe number that varies from 0 to $M-1$, and c_1 and c_2 are constants such that $c_1 \neq 0$ and $c_2 \neq 0$

Example.

• Consider a hash table of size 10, please use quadratic probing to insert the keys 72, 27, 36, 24, 63, 81, 101, and 92 into the table

- If we set
$$
c_1 = 1
$$
 and $c_2 = 3$

Example..

- Consider a hash table of size 10, please use quadratic probing to insert the keys 72, 27, 36, 24, 63, 81, 101, and 92 into the table
	- Step 2
		- $x = 27$
		- $h(27,0) = [h'(27) + 1 \times 0 + 3 \times 0^2] \text{ mod } 10$ $= [(27 \text{ mod } 10) + 0 + 0] \text{ mod } 10 = 7$

- Step 3
	- $x = 36$

Example…

- Consider a hash table of size 10, please use quadratic probing to insert the keys 72, 27, 36, 24, 63, 81, 101, and 92 into the table
	- Step 4
		- $h(24,0) = [h'(24) + 1 \times 0 + 3 \times 0^2] \text{ mod } 10$ $= [(24 \mod 10) + 0 + 0] \mod 10 = 4$

$$
- \text{ Step 5}
$$

•
$$
h(63,0) = [h'(63) + 1 \times 0 + 3 \times 0^2] \text{ mod } 10
$$

= [(63 mod 10) + 0 + 0] mod 10 = 3

– Step 6

• $h(81,0) = [h'(81) + 1 \times 0 + 3 \times 0^2] \text{ mod } 10$ $= [(81 \mod 10) + 0 + 0] \mod 10 = 1$

Example….

• Consider a hash table of size 10, please use quadratic probing to insert the keys 72, 27, 36, 24, 63, 81, 101, and 92 into the table

$$
- \text{ Step 7}
$$

• $h(101,0) = [h'(101) + 1 \times 0 + 3 \times 0^2] \text{ mod } 10$ $= [(101 \mod 10) + 0 + 0] \mod 10 = 1$

• $h(101,1) = [h'(101) + 1 \times 1 + 3 \times 1^2] \text{ mod } 10$ $= [(101 \mod 10) + 1 + 3] \mod 10 = 5$

Example..…

• Consider a hash table of size 10, please use quadratic probing to insert the keys 72, 27, 36, 24, 63, 81, 101, and 92 into the

table

- Step 8
	- $h(92,0) = [h'(92) + 1 \times 0 + 3 \times 0^2] \text{ mod } 10$ $= [(92 \text{ mod } 10) + 0 + 0] \text{ mod } 10 = 2$
	- $h(92,1) = [h'(92) + 1 \times 1 + 3 \times 1^2] \text{ mod } 10$ $= [(92 \text{ mod } 10) + 1 + 3] \text{ mod } 10 = 6$
	- $h(92,2) = [h'(92) + 1 \times 2 + 3 \times 2^2] \text{ mod } 10$ $= [(92 \text{ mod } 10) + 2 + 12] \text{ mod } 10 = 6$
	- $h(92,3) = [h'(92) + 1 \times 3 + 3 \times 3^2] \text{ mod } 10$ $= [(92 \text{ mod } 10) + 3 + 27] \text{ mod } 10 = 2$
	- $h(92,4) = [h'(92) + 1 \times 4 + 3 \times 4^2] \text{ mod } 10$ $= [(92 \text{ mod } 10) + 4 + 48] \text{ mod } 10 = 4$
	- $h(92,5) = [h'(92) + 1 \times 5 + 3 \times 5^2] \text{ mod } 10$ $= [(92 \text{ mod } 10) + 5 + 75] \text{ mod } 10 = 2$

Example…...

• Consider a hash table of size 10, please use quadratic probing to insert the keys 72, 27, 36, 24, 63, 81, 101, and 92 into the table

•
$$
h(92,6) = [h'(92) + 1 \times 6 + 3 \times 6^2] \mod 10
$$

= [(92 mod 10) + 6 + 108] mod 10 = 6

- $h(92,7) = [h'(92) + 1 \times 7 + 3 \times 7^2] \text{ mod } 10$ $= [(92 \text{ mod } 10) + 7 + 147] \text{ mod } 10 = 6$
- $h(92,8) = [h'(92) + 1 \times 8 + 3 \times 8^2] \text{ mod } 10$ $= [(92 \text{ mod } 10) + 8 + 192] \text{ mod } 10 = 2$
- $h(92,9) = [h'(92) + 1 \times 9 + 3 \times 9^2] \text{ mod } 10$ $= [(92 \text{ mod } 10) + 9 + 243] \text{ mod } 10 = 4$
- One of the major **drawbacks** of quadratic probing is that a sequence of successive probes **may only explore a fraction of** the table, and this fraction may be quite small
	- 17 • If this happens, then we will not be able to find an empty location in the table despite the fact that the table is not full

Double Hashing

- Double hashing uses one hash value and then repeatedly steps forward an interval until an empty location is reached
	- The interval is decided using a second, independent hash function, hence the name double hashing

 $h(x, l) = [h_1(x) + l \times h_2(x)] \bmod M$

- $-$ *M* is the size of the hash table
- $h_1(x)$ and $h_2(x)$ are two hash functions
	- $h_1(x) = x \mod M$
	- $h_2(x) = x \mod M'$
	- M' is chosen to be less than M We can choose $M' = M - 1$ or $M' = M - 2$
- *i* is the probe number that varies from 0 to $M-1$

Example.

- Consider a hash table of size 10, please use double hashing to insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the table
	- If we set $h_1 = x \mod 10$ and $h_2 = x \mod 8$
	- Initial

- Step 1
	- $x = 72$
	- $h(72,0) = [h_1(72) + 0 \times h_2(72)] \text{ mod } 10$ $= [(72 \text{ mod } 10) + 0 \times (72 \text{ mod } 8)] \text{ mod } 10 = 2$
- Step 2
	- $x = 27$
	- $h(27,0) = [h_1(27) + 0 \times h_2(27)]$ mod 10 $= [(27 \text{ mod } 10) + 0 \times (27 \text{ mod } 8)] \text{ mod } 10 = 7$

Example..

- Consider a hash table of size 10, please use double hashing to insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the table
	- Step 3
		- $x = 36$
		- $h(36,0) = [h_1(36) + 0 \times h_2(36)]$ mod 10 $= [(36 \text{ mod } 10) + 0 \times (36 \text{ mod } 8)] \text{ mod } 10 = 6$
	- Step 4
		- $x = 24$
		- $h(24,0) = [h_1(24) + 0 \times h_2(24)] \text{ mod } 10$ $= [(24 \mod 10) + 0 \times (24 \mod 8)] \mod 10 = 4$
	- Step 5
		- $x = 63$

•
$$
h(63,0) = [h_1(63) + 0 \times h_2(63)] \text{ mod } 10
$$

= [(63 mod 10) + 0 \times (63 mod 8)] mod 10 = 3

Example...

- Consider a hash table of size 10, please use double hashing to insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the table
	- Step 6
		- $x = 81$

• $h(81,0) = [h_1(81) + 0 \times h_2(81)] \text{ mod } 10$ $= [(81 \mod 10) + 0 \times (81 \mod 8)] \mod 10 = 1$

– Step 7

- $x = 92$
- $h(92,0) = [h_1(92) + 0 \times h_2(92)] \text{ mod } 10$ $= [(92 \text{ mod } 10) + 0 \times (92 \text{ mod } 8)] \text{ mod } 10 = 2$
- $h(92,1) = [h_1(92) + 1 \times h_2(92)] \text{ mod } 10$ $= [(92 \text{ mod } 10) + 1 \times (92 \text{ mod } 8)] \text{ mod } 10 = 6$
- $h(92,2) = [h_1(92) + 2 \times h_2(92)] \text{ mod } 10$ $= [(92 \text{ mod } 10) + 2 \times (92 \text{ mod } 8)] \text{ mod } 10 = 0$

Example....

• Consider a hash table of size 10, please use double hashing to insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the table

 $= [(101 \mod 10) + 2 \times (101 \mod 8)] \mod 10 = 1$

• ….

Rehashing

- When the hash table becomes nearly full, the number of collisions increases, thereby degrading the performance of insertion and search operations
	- A better option is to create a new hash table with size double of the original hash table
- By performing the rehashing, all the entries in the original hash table will then have to be moved to the new hash table
	- This is done by taking each entry, computing its new hash value, and then inserting it in the new hash table
- Though rehashing seems to be a simple process, it is quite expensive and must therefore not be done frequently

Example

- Consider the hash table of size 5 given below
	- The hash function used is $h(x) = x \text{ mod } 5$ with linear probing

- Rehash the entries into to a new hash table
	- Note that the new hash table is of 10 locations, double the size of the original table
	- Rehash the key values from the old hash table into the new one using hash function $h(x) = x \text{ mod } 10$ with linear probing

Chaining

- In chaining, each location in a hash table stores a pointer to a linked list that contains all the key values that were hashed to that location
	- Location n in the hash table points to the head of the linked list of all the key values that hashed to n
	- If no key value hashes to n, then location n in the hash table contains NULL

Example.

- Insert the keys 7, 24, 18, 52, 36, 54, 11, and 23 in a chained hash table of 9 memory locations
	- The hash function is $h(x) = x \text{ mod } 9$
	- Step 1 • $x = 7$ • $h(7) = 7 \mod 9 = 7$ – Step 2 • $x = 24$ • $h(24) = 24 \mod 9 = 6$ – Step 3 • $x = 18$
		- $h(18) = 18 \text{ mod } 9 = 0$
	- Step 4
		- $x = 52$
		- $h(52) = 52 \text{ mod } 9 = 7$

Example..

- Insert the keys 7, 24, 18, 52, 36, 54, 11, and 23 in a chained hash table of 9 memory locations
	- Step 5
		- $x = 36$

- Step 6
	- $x = 54$
	- $h(54) = 54 \text{ mod } 9 = 0$
- Step 7
	- $x = 11$
	- $h(11) = 11 \mod 9 = 2$
- Step 8
	- $x = 23$
	- $h(23) = 23 \text{ mod } 9 = 5$

Summary

Grading

- Homework: 55%
	- HW0: 5%
	- $-$ HW1~5: 10%
- Midterm: 25%
- Final: 30%

Questions?

kychen@mail.ntust.edu.tw